

for the total height.) height minus 5 inches (B) to (A) (Remember to add your own and the height (A) of the object. displays the angle of elevation (a) Sneaky Range Finder's gauge then through the pointer straw. The ground, view the top of the target steady with the bottom level with the object. Holding the Sneaky Range Finder Stand to feet or 50 feet from your target

another side, like the height of a tree! Right-Angle Triangle you can find the length of If you know the length of one side and one angle of a

Sneaky Kange Finder: Measure the Unreachable

Since every angle has its own unique tangent, if the bottom of an object is not exactly 10 or 50 feet away you can still find its height. First use the Sneaky Range Finder to determine the angle of elevation of the target object's top, then find that angle's tangent number in the table below. Multiply the distance to the object by the tangent number found to calculate the object's height!

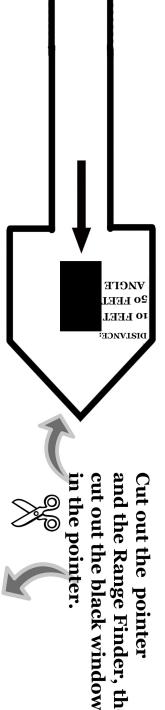
For example, if the elevation angle to the top of a flagpole is measured by the Sneaky Range Finder to be 65-degrees, and that pole is 67 feet away, multiply 67 times 2.14 (the tangent of 65-degrees from the table

below) to determine the pole is 143 feet tall (plus your height minus 5 inches)

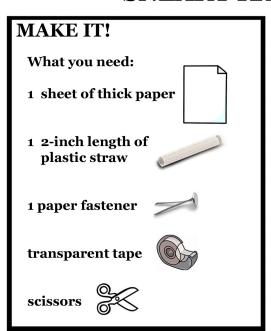
Sneaky Trick - If you cannot directly measure the distance to the object whose height you want to determine (see diagram below): (1) Find the object's angle of elevation and corresponding tangent. (2) Turn 90-degrees right and walk exactly 50-feet to (B). (3) Holding it horizontally, look through the Sneaky Range Finder and determine the angle between the object's base and your

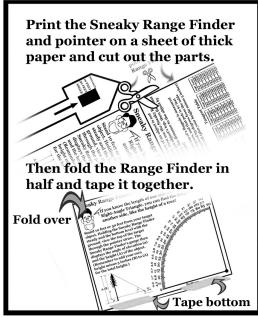
18

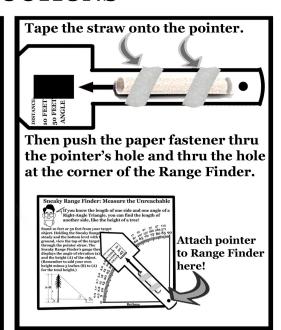
175 283 571 186 283 571


original starting point (A). Multiply the tangent of that angle by 50 feet to determine the distance from your original starting point to the object being measured.

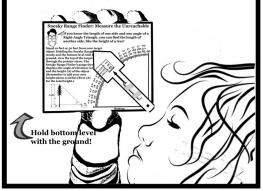
(4) Multiply that length by the tangent you determined in step (1).

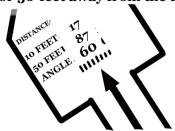

D	(A)	7	Fo to Tl
h y			m
			(C
		Vo.	
1	16 8	600	th
c	3 6 9 C	2	N
anmeiss	019	55° B	of
	led: 65°	seet	is
912	le distance	50 feet	If
	A		5 1


or example: You measure the original angle the flagpole top to be 65 degrees. hen, after pacing off 50 feet to (B), you easure the angle between points (A) and C) to be 55 degrees, multiply 50 feet by 426 (the tangent of 55 degrees) and find ne distance from (A) to (C) is 71 feet! ow, multiply 71 Feet times 2.14 (the tangent f the original 65 degrees) and find the flagpole 152 feet tall plus your height minus 5 inches! you are, for example, 5 feet 5 inches tall, add feet to the 152 feet to find the total height of the flagpole is 157 feet!


	Tangent Table								
Angle	tan(a)	Angle	tan(a)	Ì	Angle	tan(a)		Angle	tan(
0.0	0.00	25.0	.4663	1	46.0	1.0355		71.0	2.90
1.0	.0175	26.0	.4877	1	47.0	1.0724		72.0	3.07
2.0	.0349	27.0	.5095	1	48.0	1.1106		73.0	3.2
3.0	.0524	28.0	.5317	1	49.0	1.1504		74.0	3.48
4.0	.0699	29.0	.5543	1	50.0	1.1918		75.0	3.73
5.0	.0875	30.0	.5773	1	51.0	1.2349		76.0	4.01
6.0	.1051	31.0	.6009		52.0	1.2799		77.0	4.33
7.0	.1228	32.0	.6249		53.0	1.3270		78.0	4.70
8.0	.1405	33.0	.6494	1	54.0	1.3764		79.0	5.14
9.0	.1584	34.0	.6745		55.0	1.4281		80.0	5.67
10.0	.1763	35.0	.7002		56.0	1.4826		81.0	6.31
11.0	.1944	36.0	.7265		57.0	1.5399		82.0	7.11
12.0	.2126	37.0	.7535		58.0	1.6003		83.0	8.14
13.0	.2309	38.0	.7813		59.0	1.6643		84.0	9.51
14.0	.2493	39.0	.8098		60.0	1.7321		85.0	11.4
15.0	.2679	40.0	.8391		61.0	1.8040		86.0	14.3
16.0	.2867	41.0	.8693		62.0	1.8907		87.0	19.0
17.0	.3057	42.0	.9004		63.0	1.9626		88.0	28.6
18.0	.3249	43.0	.9325		64.0	2.0503		89.0	57.2
19.0	.3443	44.0	.9657		65.0	2.1445		90.0	infir
20.0	.3640	45.0	1.000		66.0	2.2460			
21.0	.3839				67.0	2.3559			
22.0	.4040				68.0	2.4751			
23.0	.4245				69.0	2.6051			
24.0	4450			1	70.0	0.747	ı		

SNEAKY RANGE FINDER INSTRUCTIONS




USE IT!

Using the Sneaky Range Finder

Hold the Range Finder a few inches from your eye and parallel with the ground. Use your other hand to aim the pointer at the top of the target object as you look through the straw.

Calculate the vertical height from 10- or 50-feet away from the target.

For example: If your pointer shows a 60-degree angle to the top of the target and you are 50-feet from the target, the Range Finder scale shows the target is 87-feet high (plus your viewing height):

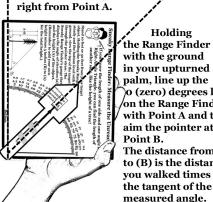
87 feet + 5 feet viewing height = 92 total feet high!

Calculating Height with a Tangent Table

If you are not exactly 10- feet or 50-feet from an object, you can still determine the height of the object. Just multiply the distance to the target by the tangent of its angle measurement (found in the table to the right):

Example:

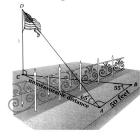
Object distance = 67 feet Angle of elevation = 65 degrees Tangent of 65 degrees = 2.14 **Multiply 67 x 2.14 = 143.68 feet** Add viewing height (we use 5 feet) 143.68 + 5


Tangent Table

Total height = approximately 149 feet high!

GOING FURTHER!

Using the Range Finder Horizontally Point A Point B


A < How far is it from (A) to (B)? > BStand at Point A facing B and then walk 10 (or 50) feet

Holding the Range Finder level with the ground in your upturned palm, line up the o (zero) degrees line on the Range Finder with Point A and then aim the pointer at Point B. The distance from (A) to (B) is the distance vou walked times

Sneaky Trick - If you cannot directly measure the distance to the object whose height you want to determine:

-) Find the object's(A) angle of elevation and corresponding tangent.
- (2) Turn 90-degrees right or left and walk exactly 50-feet.
- (3) Holding it horizontally, look through the Sneaky Range Finder and determine the angle between the object(A) and your original starting point(B). Multiply the tangent of that angle by 50 feet to determine the distance from your original starting point to the object being measured.
- (4) Multiply that length by the tangent you determined in step (1).

	55 and the state of the state o
S	neakyMath.com

Angle	tan(a)	Angle	tan(a)	Angle	tan(a)	Angle	tan(a)
0.0	0.00	25.0	.4663	46.0	1.0355	71.0	2.9042
1.0	.0175	26.0	.4877	47.0	1.0724	72.0	3.0777
2.0	.0349	27.0	.5095	48.0	1.1106	73.0	3.2709
3.0	.0524	28.0	.5317	49.0	1.1504	74.0	3.4874
4.0	.0699	29.0	.5543	50.0	1.1918	75.0	3.7321
5.0	.0875	30.0	.5773	51.0	1.2349	76.0	4.0108
6.0	.1051	31.0	.6009	52.0	1.2799	77.0	4.3315
7.0	.1228	32.0	.6249	53.0	1.3270	78.0	4.7046
8.0	.1405	33.0	.6494	54.0	1.3764	79.0	5.1446
9.0	.1584	34.0	.6745	55.0	1.4281	80.0	5.6713
10.0	.1763	35.0	.7002	56.0	1.4826	81.0	6.3138
11.0	.1944	36.0	.7265	57.0	1.5399	82.0	7.1154
12.0	.2126	37.0	.7535	58.0	1.6003	83.0	8.1443
13.0	.2309	38.0	.7813	59.0	1.6643	84.0	9.5144
14.0	.2493	39.0	.8098	60.0	1.7321	85.0	11.430
15.0	.2679	40.0	.8391	61.0	1.8040	86.0	14.301
16.0	.2867	41.0	.8693	62.0	1.8907	87.0	19.081
17.0	.3057	42.0	.9004	63.0	1.9626	88.0	28.636
18.0	.3249	43.0	.9325	64.0	2.0503	89.0	57.290
19.0	.3443	44.0	.9657	65.0	2.1445	90.0	infinite
20.0	.3640	45.0	1.000	66.0	2.2460		
21.0	.3839			67.0	2.3559		
22.0	.4040			68.0	2.4751		
23.0	.4245			69.0	2.6051		
24.0	.4452			70.0	2.7475		